Managing Human Capital with AI: Synergy of Talent and Technology
pdf (English)

Słowa kluczowe

AI
HRM
talent management

Kategorie

Jak cytować

Bashynska, I., Prokopenko, O. i Sala, D. (2023) „Managing Human Capital with AI: Synergy of Talent and Technology”, Zeszyty Naukowe Wyższej Szkoły Finansów i Prawa w Bielsku-Białej. Bielsko-Biała, PL, 27(3), s. 39–45. doi: 10.19192/wsfip.sj3.2023.5.

Abstrakt

The article explores how integrating artificial intelligence in human capital management can create a powerful synergy between human talent and cutting-edge technology. It delves into the ways in which AI is transforming the HR landscape, from recruitment and onboarding to employee development and retention. The article discusses the benefits of using AI-driven tools and strategies to enhance talent acquisition, workforce productivity, and employee satisfaction. The strategic advantages of AI-driven human capital management are evident from agile workforce planning and talent acquisition optimization to dynamic performance management and data-driven decision-making. The ability to continuously adapt to market changes, streamline processes, and provide personalized learning and development opportunities enhances an organization's resilience and competitiveness in a fast-paced and uncertain business environment. Moreover, the amalgamation of AI and human capital management is a technological advancement and a strategic imperative. It empowers organizations to harness the synergy of talent and technology, positioning them for a smarter, more agile, and prosperous future. As the digital age continues to unfold, this strategic merger will be central to unlocking the full potential of human capital in organizations and achieving a sustainable and competitive edge in the modern workplace.

https://doi.org/10.19192/wsfip.sj3.2023.5
pdf (English)

Bibliografia

Agarwal, S., Nguyen, T.D.L., Aponte, G.J.R. (2023). Artificial Intelligence as a Strategic Partner to HRM 4.0. Studies in Computational Intelligence, 1068, 319-327.

Agnihotri, A., Mathad, K., & Kadry, S. (2023). The new HR inclination for artificial intelligence aiding talent acquisition. Disruptive Artificial Intelligence and Sustainable Human Resource Management: Impacts and Innovations - The Future of HR, pp. 111–122. https://doi.org/10.3390/su151914075

Asiryan, S. (2023). Steps of the EU countries aimed at protecting the constitutional rights in the era of artificial intelligence. Uzhhorod National University Herald Series Law, 2(76), 285-290. https://doi.org/10.24144/2307-3322.2022.76.2.45

Bashynska, I., Mukhamejanuly, S., Malynovska, Y., Bortnikova, M., Saiensus, M., Malynovskyy, Y. (2023). Assessing the Outcomes of Digital Transformation Smartization Projects in Industrial Enterprises: A Model for Enabling Sustainability. Sustainability, 15, 14075. https://doi.org/10.3390/su151914075

Boon, C., Den Hartog, D. N., & Lepak, D. P. (2019). A Systematic Review of Human Resource Management Systems and Their Measurement. Journal of Management, 45(6), 2498-2537. https://doi.org/10.1177/0149206318818718

Chavan, S. & Patil, M. (2023). Galatea 2.2: Sentient AI and Reflections on Conscious Machines and Human Identity. September 2023International Journal of Science and Research, 12(7), 1778-1781. https://doi.org/10.21275/SR23722203454

Dudek, M., Bashynska, I., Filyppova, S., Yermak, S., & Cichoń, D. (2023). Methodology for assessment of inclusive social responsibility of the energy industry enterprises. Journal of Cleaner Production, 394, 136317. https://doi.org/10.1016/j.jclepro.2023.136317

Flinn, S. (2019). Optimizing data-to-learning-to-action: The modern approach to continuous performance improvement for businesses. Optimizing Data-to-Learning-to-Action: The Modern Approach to Continuous Performance Improvement for Businesses, pp. 1–191. https://doi.org/10.1007/978-1-4842-3531-7

Lourens, M., Raman, R., Vanitha, P., Singh, R., Manoharan, G., & Tiwari, M. (2022). Agile Technology and Artificial Intelligent Systems in Business Development. In 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), 1602-1607).

Malynovska, Y., Bashynska, I., Cichoń, D., Malynovskyy, Y., & Sala, D. (2022). Enhancing the Activity of Employees of the Communication Department of an Energy Sector Company. Energies, 15(13):4701. https://doi.org/10.3390/en15134701

Megits, N., Aliyev, S., Pustovhar, S., Bielialov, T., & Prokopenko, O. (2022). The «Five-Helix» Model as an effective way to develop business in Industry 4.0 of selected countries. Journal of Eastern European and Central Asian Research, 9(2), 357-368. https://doi.org/10.15549/jeecar.v9i2.920

Nawaz, N. & Gomes, A. (2019). Artificial Intelligence Chatbots are New Recruiters. International Journal of Advanced Computer Science and Applications. 10(9), http://dx.doi.org/10.14569/IJACSA.2019.0100901

Pandey, A., Balusamy, B., & Chilamkurti, N. (2023). Disruptive artificial intelligence and sustainable human resource management: Impacts and innovations - The future of HR. Impacts and Innovations - The Future of HR, pp. 1–276.

Pillai, R. & Sivathanu, B. (2020). Adoption of artificial intelligence (AI) for talent acquisition in IT/ITeS organizations. Benchmarking: An International Journal, 27(9), 2599-2629. https://doi.org/10.1108/BIJ-04-2020-0186

Prokopenko, O., Shmorgun, L., Kushniruk, V., Prokopenko, M., Slatvinska, M., & Huliaieva, L. (2020). Business process efficiency in a digital economy. International Journal of Management, 11(3), pp. 122-132. https://doi.org/10.34218/IJM.11.3.2020.014

Ramesh, S., & Das, S. (2022). Adoption of AI in Talent Acquisition: A Conceptual Framework. In: Motahhir, S., Bossoufi, B. (eds) Digital Technologies and Applications. ICDTA 2022. Lecture Notes in Networks and Systems, vol 454. Springer, Cham. https://doi.org/10.1007/978-3-031-01942-5_2

Sharon, D. & Aggarwal, V. (2019). Impact of disruptive technology on human resource management practices. International Journal of Business Continuity and Risk Management, 9(4):350. https://doi.org/10.1504/IJBCRM.2019.10021173

Sotnyk, I., Kurbatova, T., Kubatko, O., Prokopenko, O., Prause, G., Kovalenko, Y., Trypolska, G., & Pysmenna, U. (2021). Energy Security Assessment of Emerging Economies under Global and Local Challenges. Energies, 14(18), 5860. https://doi.org/10.3390/en14185860

Theodorou, A. & Dignum, V. (2020). Towards ethical and sociolegal governance in AI. Nature Machine Intelligence, 2, 10–12. https://doi.org/10.1038/s42256-019-0136-y

Vaiste, J. (2019). Ethics of AI Technologies and Organizational Roles: Who Is Accountable for the Ethical Conduct?. In Proceedings of the 3rd Seminar of Technology Ethics (Tethics ’19, Vol. 2505), Minna M Rantanen and Jani Koskinen (Eds.). CEUR-WS, Turku, Finland, 39–48

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne 4.0 Międzynarodowe.

Prawa autorskie (c) 2023 Iryna Bashynska, Olha Prokopenko, Dariusz Sala

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##