Abstract
Mid-scale solar power plants have been observed as one of the convenient and expandable alternatives to the sustainable production of electricity as global energy systems move towards decarbonization. However, their performance is greatly different as a result of technical design, environmental conditions, and financial parameters. The aim of this work is to formulate a driven econometric model that can determine and forecast the energy production of mid-scale photovoltaic systems through a multidimensional structure. The model is based on data in the United States over 2022-2024, which is a combination of solar irradiance, temperature levels, panel area, inverter efficiency, plant age, dust losses, grid availability, and economic indicators, including financing and installation costs. Through multiple linear regression, the analysis indicates a consistent growth of the annual energy generation-16.5 million kWh in 2022, 18.1 million kWh in 2024, as it correlates moderately with incremental irradiance (5.2 to 5.4 kWh/m2/day), panel area (10,000 to 10,400 m2), and inverter efficiency (96 to 97 percent).
References
Basnet, S.; Deschinkel, K.; Le Moyne, L.; Péra, M.C. A review on recent standalone and grid integrated hybrid renewable energy systems: System optimization and energy management strategies. Renew. Energy Focus 2023, 46, 103–125. https://doi.org/ 10.1016/j.ref.2023.06.001
Bonilla, J.; Blanco, J.; Zarza, E.; Alarcón-Padilla, D.C. Feasibility and practical limits of full decarbonization of the electricity market with renewable energy: Application to the Spanish power sector. Energy 2021, 239, 122437. https://doi.org/ 10.1016/j.energy.2021.122437
Brown, A.; Beiter, P.; Heimiller, D.; Davidson, C.; Denholm, P.; Melius, J.; Lopez, A.; Hettinger, D.; Mulcahy, D.; Porro, G. Estimating Renewable Energy Economic Potential in the United States: Methodology and Initial Results; National Renewable Energy Laboratory: Golden, CO, USA, 2016. Available online: https://www.nrel.gov/docs/fy15osti/64503.pdf (accessed on 19 March 2025).
Brown, P.R.; Williams, T.; Brown, M.L.; Murphy, C. System-cost-minimizing deployment of PV-wind hybrids in low-carbon U.S. power systems. Appl. Energy 2024, 365, 123151. https://doi.org/ 10.1016/j.apenergy.2024.123151
Clark, C.E.; Barker, A.; King, J.; Reilly, J. Wind and Solar Hybrid Power Plants for Energy Resilience; National Renewable Energy Laboratory: Golden, CO, USA, 2022; NREL/TP-5R00-80415. Available online: https://www.nrel.gov/docs/fy22osti/80415.pdf (accessed on 19 March 2025).
Dykes, K.; King, J.; DiOrio, N.; King, R.; Gevorgian, V.; Corbus, D.; Blair, N.; Anderson, K.; Stark, G.; Turchi, C.; et al. Opportunities for Research and Development of Hybrid Power Plants; National Renewable Energy Laboratory: Golden, CO, USA, 2020; NREL/TP-5000-75026. Available online: https://www.nrel.gov/docs/fy20osti/75026.pdf (accessed on 27 March 2025).
Gallego-Castillo, C.; Victoria, M. Improving Energy Transition Analysis Tool through Hydropower Statistical Modelling. Energies 2020, 14, 98. https://doi.org/ 10.3390/en14010098
Gallego-Castillo, C.; Victoria, M. PyPSA-Spain: An extension of PyPSA-Eur to model the Spanish energy system. Energy Strategy Rev. 2024, 60, 101764. https://doi.org/10.1016/j.esr.2025.101764
Gorman, W.; Rand, J.; Manderlink, N.; Cheyette, A.; Bolinger, M.; Seel, J.; Jeong, J.; Wiser, R. Hybrid Power Plants; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2024; Available online: https://www.utilitydive.com/news/hybrid-power-plants-account-for-majority-of-proposed-us-solar-storage-capacity-LBNL/728582/#:~:text=Dive%20Brief%3A,a%20higher%20price (accessed on 19 March 2025).
IRENA. Renewable Energy Statistics 2024. International Renewable Energy Agency, 2024. https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/Statistics-Time-Series
Jerez, S.; Barriopedro, D.; García-López, A.; Lorente-Plazas, R.; Somoza, A.M.; Turco, M.; Carrillo, J.; Trigo, R.M. An action-oriented approach to make the most of the wind and solar power complementarity. Earth’s Future 2023, 11, e2022EF003332. https://doi.org/10.1029/2022EF003332
Jiménez-Garrote, A.; Sánchez-Hernández, G.; López-Cuesta, M.; Pozo-Vázquez, D. SOWISP—A retrospective high spatial and temporal resolution database of the installed wind and solar PV power in Spain. Sol. Energy 2023, 256, 44–54. https://doi.org/10.1016/j.solener.2023.03.009
Jiménez-Garrote, A.; Santos-Alamillos, F.J.; Sánchez-Hernández, G.; López-Cuesta, M.; Ruiz-Arias, J.A.; Pozo-Vázquez, D. Evaluation of a Database of the Spanish Wind Energy Resources Derived from a Regional Reanalysis. Energies 2024, 17, 1523. https://doi.org/ 10.3390/en17071523
Klyve, Ø.S.; Olkkonen, V.; Nygård, M.M.; Lingfors, D.; Marstein, E.S.; Lindberg, O. Retrofitting wind power plants into hybrid PV–wind power plants: Impact of resource related characteristics on techno-economic feasibility. Appl. Energy 2024, 379, 124895. https://doi.org/ https://doi.org/10.1016/j.apenergy.2024.124895
Koldovskiy, A. Strategic Infrastructure Transformation: Revolutionizing Financial Sector Management for Enhanced Success. Acta Academiae Beregsasiensis. Economics 2024, 5, 323–332. https://doi.org/10.58423/2786-6742/2024-5-323-332.
LBNL. Tracking the Sun: Installed Price Trends for Distributed Photovoltaic Systems in the United States. Lawrence Berkeley National Laboratory, 2023. https://emp.lbl.gov/tracking-the-sun
Mazur, V.; Koldovskyi, A.; Ryabushka, L.; Yakubovska, N. The Formation of a Rational Model of Management of the Construction Company’s Capital Structure. Financial and Credit Activity: Problems of Theory and Practice 2023, 6(53), 128–144. https://doi.org/10.55643/fcaptp.6.53.2023.4223.
NREL. National Solar Radiation Database (NSRDB). National Renewable Energy Laboratory, 2024. https://nsrdb.nrel.gov/
NREL. PVWatts Calculator – Estimating Solar Energy Production. National Renewable Energy Laboratory, 2024. https://pvwatts.nrel.gov/
Oh, M.; Kim, C.K.; Kim, B.; Kim, H.-G. A novel model to estimate regional differences in time-series solar and wind forecast predictability across small regions: A case study in South Korea. Energy 2024, 291, 130284. https://doi.org/ 10.1016/j.energy.2024.130284
Osorio-Aravena, J.C.; Rodríguez-Segura, F.J.; Frolova, M.; Terrados-Cepeda, J.; Muñoz-Cerón, E. How much solar PV, wind and biomass energy could be implemented in short-term? A multi-criteria GIS-based approach applied to the province of Jaén, Spain. J. Clean. Prod. 2022, 366, 132920. https://doi.org/10.1016/j.jclepro.2022.132920
Prokopenko, O.; Chechel, A.; Koldovskiy, A.; Kldiashvili, M. Innovative Models of Green Entrepreneurship: Social Impact on Sustainable Development of Local Economies. Economics Ecology Socium 2024a, 8, 89–111. https://doi.org/10.61954/2616-7107/2024.8.1-8
Prokopenko, O.; Koldovskiy, A.; Khalilova, M.; Orazbayeva, A.; Machado, J. Development of Blockchain Technology in Financial Accounting. Computation 2024b, 12, 250. https://doi.org/10.3390/computation12120250
Rekik, S.; El Alimi, S. Optimal wind-solar site selection using a GIS-AHP based approach: A case of Tunisia. Energy Convers. Manag. X 2023, 18, 100355. https://doi.org/ 10.1016/j.ecmx.2023.100355
Sánchez-Hernández, G.; Jiménez-Garrote, A.; López-Cuesta, M.; Galván, I.M.; Aler, R.; Pozo-Vázquez, D. A novel method for modeling renewable power production using ERA5: Spanish solar PV energy. Renew. Energy 2024, 240, 122120. https://doi.org/ 10.1016/j.renene.2024.122120
Sekeroglu, A.; Erol, D. Site selection modeling of hybrid renewable energy facilities using suitability index in spatial planning. Renew. Energy 2023, 219, 119458. https://doi.org/ 10.1016/j.renene.2023.119458
U.S. Department of Energy (DOE). Hybrid Energy Systems: Opportunities for Coordinated Research; National Renewable Energy Laboratory: Golden, CO, USA, 2021; DOE/GO-102021-5447. Available online: https://www.nrel.gov/docs/fy21osti/77503.pdf (accessed on 19 March 2025).
U.S. Energy Information Administration (EIA). Electric Power Monthly. U.S. Department of Energy, 2024. https://www.eia.gov/electricity/monthly/
Vázquez, R.; Cabos, W.; Nieto-Borge, J.C.; Gutiérrez, C. Complementarity of offshore energy resources on the Spanish coasts: Wind, wave, and photovoltaic energy. Renew. Energy 2024, 224, 120213. https://doi.org/ 10.1016/j.renene.2024.120213
World Bank. The World Development Indicators. World Bank, 2023. https://datatopics.worldbank.org/world-development-indicators/
World Bank. World Bank Open Data. World Bank, 2024. Available online: https://data.worldbank.org/
Wu, H.; West, S.R. Co-optimisation of wind and solar energy and intermittency for renewable generator site selection. Heliyon 2024, 10, e26891. https://doi.org/ 10.1016/j.heliyon.2024.e26891

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 Ivan S. Zhukov