The Opportunities and Challenges in Integrating AI with Quantum Computing
pdf

Keywords

Quantum AI
Quantum Machine Learning (QML)
Hybrid Quantum-Classical Computing
Computational Advantage
NISQ Era Challenges

Categories

How to Cite

Słapczyński, T. and Stradomska, M. (2025) “The Opportunities and Challenges in Integrating AI with Quantum Computing ”, Scientific Journal of Bielsko-Biala School of Finance and Law. Bielsko-Biała, PL, 29(2). doi: 10.19192/wsfip.sj2.2025.8.

Abstract

The convergence of Artificial Intelligence (AI) and Quantum Computing (QC) marks a potentially transformative technological frontier. This study explores the synergistic integration of these fields, analyzing the landscape of opportunities and challenges arising from their combination. Quantum computing offers the promise to enhance AI by overcoming computational bottlenecks and enabling novel algorithms, particularly within machine learning and optimization. This analysis reveals significant opportunities in areas like accelerated machine learning, tackling intractable problems, and processing quantum data. However, substantial challenges currently impede progress, primarily due to limitations in Noisy Intermediate-Scale Quantum (NISQ) hardware, algorithmic complexities in demonstrating practical quantum advantage, and practical hurdles in implementation and interdisciplinary expertise. Despite these challenges, the synergistic potential of AI-QC integration remains immense, promising a paradigm shift in computational capabilities with the continued advancement of both fields, ultimately poised to revolutionize science, industry, and society

https://doi.org/10.19192/wsfip.sj2.2025.8
pdf

References

Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., ... & Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505–510. https://doi.org/10.1038/s41586-019-1666-5

Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671), 195–202. https://doi.org/10.1038/nature23474

Dowling, J. P., & Milburn, G. J. (2003). Quantum technology: the second quantum revolution. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361(1809), 1655–1674. https://doi.org/10.1098/rsta.2003.1227

Google Quantum AI. Quantum AI (2025). Retrieved from https://quantumai.google

Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., & Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747), 209–212. https://doi.org/10.1038/s41586-019-0980-2

IBM Research Blog. (2024). IBM welcomes CERN as a new hub in the IBM Quantum Network. Retrieved from https://research.ibm.com/blog/cern-lhc-qml

Nath, R. K., Thapliyal, H., & Humble, T. S. (2021). A Review of Machine Learning Classification Using Quantum Annealing for Real-World Applications. Computer Science, 2(5). https://dl.acm.org/doi/10.1007/s42979-021-00751-0

Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-2018-08-06-79

Quantum Computing Report (2025). Retrieved from https://quantumcomputingreport.com/

Schuld, M., Sinayskiy, I., & Petruccione, F. (2015). An introduction to quantum machine learning. Contemporary Physics, 56(2), 172–185. https://arxiv.org/abs/1409.3097

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Tomasz Słapczyński, Marlena Stradomska

Downloads

Download data is not yet available.